

Unit Outcomes:

After completing this unit, you should be able to:

4 know more theorems special to triangles.

- know basic theorems specific to quadrilaterals.
* know theorems about circles and angles inside, on and outside a circle.
\# solve geometrical problems involving quadrilaterals, circles and regular polygons.

Main Contents

6.1 Theorems on triangles
6.2 Special quadrilaterals
6.3 More on circles
6.4 Regular polygons

Key Terms
Summary
Review Exercises

INTRODUCTION

Why do you study Geometry?

- Geometry teaches you how to think clearly. Of all the subjects taught at high school level, Geometry is one of the lessons that gives the best training in correct and accurate methods of thinking.
- The study of Geometry has a practical value. If someone wants to be an artist, a designer, a carpenter, a tinsmith, a lawyer or a dentist, the facts and skills learned in Geometry are of great value.
Abraham Lincoln borrowed a Geometry text and learned the proofs of most of the plane Geometry theorems so that he could make better arguments in court.

Leonardo da Vinci obtained the "Mona Lisa" smile by tilting the lips so that the ends lie on a circle which touches the outer corners of the eyes. The outline of the top of the head is the arc of another circle exactly twice as large as the first. In the same artist's "Last Supper", the visible part of Christ conforms to the sides of an equilateral triangle.

Plane Geometry (sometimes called Euclidean Geometry) is a branch of Geometry dealing with the properties of flat surfaces and plane figures, such as triangles, quadrilaterals or circles.

6.1 THEOREMS ON TRIANGLES

In previous grades, you have learnt that a triangle is a polygon with three sides and is the simplest type of polygon.

Three or more points that lie on one line are called collinear points. Three or more lines that pass through one point are called concurrent lines.

Concurrent lines

ACTIVITY 6.1

1 What do you call a line segment joining a vertex of a triangle to the mid-point of the opposite side?

2 How many medians does a triangle have?
3 Draw triangle $A B C$ with $\angle C=90^{\circ}, A C=8 \mathrm{~cm}$ and $C B=6 \mathrm{~cm}$. Draw the median from A to $\overline{B C}$. How long is this median? Check your result using Pythagoras theorem.

4 Draw a triangle. Construct all the three medians. Are they concurrent? Do you think that this is true for all triangles? Test this by drawing more triangles.

5 Is it possible for the medians of a triangle to meet outside the triangle?
Theorems about collinear points and concurrent lines are called incidence theorems. Some such theorems are stated below.

Recall that a line that divides an angle into two congruent angles is called an angle bisector of the angle.

A line that divides a line segment into two congruent line segments is called a bisector of the line segment. When a bisector of a line segment forms right angle with the line segment, then it is called the perpendicular bisector of the line segment.

Median of a triangle

A median of a triangle is a line segment drawn from any vertex to the mid-point of the opposite side.

Figure 6.2
$\overline{B D}$ is a median of triangle $A B C$.

ACTIVITY 6.2

Copy $\triangle \mathrm{ABC}$ in Figure 6.3.

Figure 6.3
1 Construct all the medians of $\triangle A B C$ carefully.
2 i Mark the mid-point of $\overline{B C}$ as E.
ii Mark the mid-point of $\overline{A C}$ as F.
iii Mark the mid-point of $\overline{A B}$ as D.
3 Did the medians intersect at a point?
If your answer is yes, mark the point O .
4 Measure each of the following segments and determine the indicated ratios.
i
ii a $\overline{C O}$
b $\quad \overline{O E}$
$A O: O E$
iii a $\overline{B O}$
b $\overline{O D}$
$C O: O D$
b $\overline{O F}$
$B O$: $O F$

5 How do you relate the ratios obtained in Question 4 above?
The above Activity helps you to observe the following theorem.

Theorem 6.1

The medians of a triangle are concurrent at a point $\frac{2}{3}$ of the distance from each vertex to the mid-point of the opposite side.

Proof:

Suppose $\overline{A E}$ and $\overline{D C}$ are medians of $\triangle A B C$ that are intersecting at point O . (See Figure 6.4).

Statement		Reason	
1	In $\triangle A B C, \overline{A E}$ and $\overline{D C}$ are medians intersecting at point O.	1	Given
2	Draw $\overline{D E}$.	2	Construction
3	Draw $\overline{E G}$ parallel to $\overline{D C}$ with G on the extension of $\overline{A C}$	3	Construction
4	Draw $\overline{E F}$ parallel to $\overline{A B}$ with F on $\overline{A C}$	4	Construction
5	Draw $\overline{F H}$ parallel to $\overline{D C}$ with H on $\overline{A B}$	5	Construction
6	Draw line ℓ parallel to $\overline{D C}$ pasing through A.	6	Construction
7	$A F E D$ and $C G E D$ are parallelograms with common side $\overline{D E}$	7	Steps 3 and 4
8	Therefore, $A F=D E=C G$	8	Step 7
9	$D E=\frac{1}{2} A C=A F$	9	$\triangle A B C \sim \triangle D B E$ from step 1
10	$A F=F C=C G$	10	Steps 8 and 9
11	$\overline{A G}$ is trisected by parallel lines $\ell, \stackrel{\rightharpoonup}{H F}, \overline{D C}$ and $\overleftrightarrow{E G}$.	11	Steps 3, 5 and 10
12	$\overline{A E}$ is trisected by $\ell, \overline{H F}, \overline{D C}$ and $\overline{E G}$.	12	Step 11 and property of parallel lines

Figure 6.4
Therefore, $O E=\frac{1}{3} A E, A O=\frac{2}{3} A E$.
You have proved that the medians $\overline{D C}$ and $\overline{A E}$ meet at point O such that $O A=\frac{2}{3} A E$.
Your next task is to prove that the medians $\overline{A E}$ and $\overline{B F}$ intersect at the same point O.
With the same argument used above, let O^{\prime} be the point of intersection of $\overline{A E}$ and $\overline{B F}$ whose distance from A is $\frac{2}{3}$ of $A E$ that is $A O^{\prime}=\frac{2}{3} A E$.

Figure 6.5
It follows that $A O=A O^{\prime}$ and hence $O=O^{\prime}$ as O and O^{\prime} are on $\overline{A E}$.
Therefore, all the three medians of $\triangle A B C$ are concurrent at a single point O located at $\frac{2}{3}$ of the distance from each vertex to the mid-point of the opposite side.

Example 1 In Figure 6.6, $\overline{A N}, \overline{C M}$ and $\overline{B L}$ are medians of $\triangle A B C$. If $A N=12 \mathrm{~cm}$, $O M=5 \mathrm{~cm}$ and $B O=6 \mathrm{~cm}$, find $B L, O N$ and $O L$.

Solution:

By Theorem 6.1,

$$
B O=\frac{2}{3} B L \text { and } A O=\frac{2}{3} A N
$$

Substituting $6=\frac{2}{3} B L$ and $A O=\frac{2}{3} \times 12$
So $B L=9 \mathrm{~cm}$ and $A O=8 \mathrm{~cm}$.
Since $B L=B O+O L$,

$$
O L=B L-B O=9-6=3 \mathrm{~cm} .
$$

Now, $A N=A O+O N$ gives

$$
O N=A N-A O=12-8=4 \mathrm{~cm}
$$

Figure 6.6
$\therefore B L=9 \mathrm{~cm}, O L=3 \mathrm{~cm}$ and $O N=4 \mathrm{~cm}$
Note: The point of intersection of the medians of a triangle is called the centroid of the triangle.

Altitude of a triangle

The altitude of a triangle is a line segment drawn from a vertex, perpendicular to the opposite side, or to the opposite side produced.
The altitudes through B and A for the triangles are shown in Figure 6.7.

Figure 6.7

ACTIVITY 6.3

1 What is meant by an angle bisector?
2 Any side of a triangle may be designated as a base.
How many bases may a triangle have?
3 How many altitudes can a triangle have?
4 By drawing the following types of triangle with their respective altitudes, determine whether the altitudes intersect inside or outside the triangle.
a an acute-angled triangle; b an obtuse-angled triangle;
C a right-angled triangle.
5 Draw the perpendicular bisectors of the sides of the following triangles, and note where the perpendicular bisectors intersect.
a an acute-angled triangle; b an obtuse-angled triangle;
c a right-angled triangle.
6 Draw any $\triangle A B C$. Construct the perpendicular bisectors of the sides $\overline{A B}$ and $\overline{C B}$. Label their intersection as point O .
a Why is point O equidistant from A and B ?
b Why is point O equidistant from B and C ?
c Do you think that the perpendicular bisector of the side $\overline{A C}$ passes through the point O? (Why?)
Activity 6.3 can help you to state the following theorem.

Theorem 6.2

The perpendicular bisectors of the sides of any triangle are concurrent at a point which is equidistant from the vertices of the triangle.

Let $\triangle A B C$ be given and construct perpendicular bisectors on any two of the sides. The perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$ are shown in Figure 6.8a. These perpendicular bisectors intersect at a point O; they cannot be parallel. (Why?)

Using a ruler, find the lengths $A O, B O$ and $C O$. Observe that the intersection point O is equidistant from each vertex of the triangle.
Note that the perpendicular bisector of the remaining side $\overline{B C}$ must pass through the point O. Therefore, the point of intersection of the three perpendicular bisectors is equidistant from the three vertices of $\triangle A B C$.

a

Fisure 6.8
Let us try to prove this result.
With O the point where the perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$ meet, as shown in Figure 6.8b, $\triangle A O D \equiv \triangle C O D$ by SAS and hence $\overline{A O} \equiv \overline{C O}$.
Similarly, $\triangle A O E \equiv \triangle B O E$ by SAS and hence $\overline{A O} \equiv \overline{B O}$.
Thus, $\overline{A O} \equiv \overline{B O} \equiv \overline{C O}$. It follows that O is equidistant from the vertices of $\triangle A B C$. Next, let F be the foot of the perpendicular from O to $\overline{B C}$. Then, $\overline{O F}$ is the perpendicular bisector of $\overline{B C}$ because $\triangle B O C$ is an isosceles triangle.

Therefore, the perpendicular bisectors of the sides of $\triangle A B C$ are concurrent.

Note: The point of intersection of the perpendicular bisectors of a triangle is called circumcentre of the triangle.

Theorem 6.3

The altitudes of a triangle are concurrent.

To show that the three altitudes of $\triangle A B C$ meet at a single point, construct $\triangle A^{\prime} B^{\prime} C^{\prime}$ (shown in Figure 6.9) so that the three sides of $\Delta A^{\prime} B^{\prime} C^{\prime}$ are parallel respectively to the three sides of $\triangle A B C$:

Let $\overline{E A}, \overline{B F}$ and $\overline{C D}$ be the altitudes of $\triangle A B C$.
The quadrilaterals $A B A^{\prime} C, A B C B^{\prime}$ and $A C^{\prime} B C$ are parallelograms. (Why?)
Since $A B A^{\prime} C$ is a parallelogram, $A C=B A^{\prime}$.
(Why?) Again, since $A C B C^{\prime}$ is a parallelogram, $A C=B C^{\prime}$. Therefore, $B C^{\prime}=B A^{\prime}$ (Why?) and $\overline{B F}$ bisects $\overline{A^{\prime} C^{\prime}}$.

Accordingly, $\overline{B F}$ is perpendicular to $\overline{A C}$ and so $\overline{B F}$ is the perpendicular bisector of $\overline{A^{\prime} C^{\prime}}$. Similarly, one can show that $\overline{C D}$ and $\overline{A E}$ are perpendicular bisectors of $\overline{A^{\prime} B^{\prime}}$ and $\overline{B^{\prime} C^{\prime}}$ respectively.

Therefore, the altitudes of $\triangle A B C$ are the same as the perpendicular bisectors of the sides of $\Delta A^{\prime} B^{\prime} C^{\prime}$. Since the perpendicular bisectors of any triangle are concurrent (theorem 6.2), it is therefore, true that the altitudes are concurrent.
Note: The point of intersection of the altitudes of a triangle is called orthocentre of the triangle.

Angle bisector of a triangle

Theorem 6.4

The angle bisectors of any triangle are concurrent at a point which is equidistant from the sides of the triangle.

To show that the angle bisectors of $\triangle A B C$ meet at a single point, draw the bisectors of $\angle A$ and $\angle C$, intersecting each other at O (Figure 6.10).
Construct the perpendiculars $\overline{O A^{\prime}}, \overline{O B^{\prime}}$ and $\overline{O C^{\prime}}$.
Do these segments have the same length? Show that $\triangle O B B^{\prime} \equiv \triangle O B A^{\prime}$ and conclude that

$$
\angle O B B^{\prime} \equiv \angle O B A^{\prime}
$$

Therefore, the bisector of $\angle B$ also passes through the point O.
Therefore, the angle bisectors of $\triangle A B C$ meet at a single point. Also their point of intersection is

Figure 6.10 equidistant from the three sides of $\triangle A B C$.

Note: The point of intersection of the bisectors of the angles of a triangle is called the incentre of the triangle.

Example 2 In a right angle triangle $A B C, \angle C$ is a right angle, $A B=8 \mathrm{~cm}$ and $C A=6 \mathrm{~cm}$. Find the length of $\overline{C O}$ where O is the point of intersection of the perpendicular bisectors of $\triangle A B C$.
Solution: The perpendicular bisector of $\overline{C A}$ is parallel to $\overline{C B}$. Hence, O is on $\overline{A B}$.
Therefore, $A O=4$. (By theorem 6.2, $A O=B O$)
By theorem 6.2, O is equidistant from A, B and C
Therefore, $C O=A O=4 \mathrm{~cm}$.

Group Work 6.1

Work in a small group on one or more of the following statements. There will be a class discussion on these facts, so each one should be attempted by at least one group.
Task: Check that the following statements hold true for any type of triangle by carrying out the construction carefully.
Materials required: ruler, protractor and compasses
Method: construction and measurement
1 The medians of any triangle are concurrent.
2 The medians of a triangle are concurrent at a point $\frac{2}{3}$ the distance from each vertex to the mid-point of the oppostie side.

3 The altitudes of any triangle are concurrent.
4 The perpendicular bisectors of the sides of any triangle are concurrent at a point which is equidistant from the vertices of the triangle.
5 The angle bisectors of any triangle are concurrent at a point which is equidistant from the sides of the triangle.
6 Given any triangle, explain how you can find the centre of the circle:
a inscribed in the triangle (incentre).
b circumscribed about the triangle (circumcentre).

Altitude theorem

The altitude theorem is stated here for a right angled triangle. It relates the length of the altitude to the hypotenuse of a right angled triangle, to the lengths of the segments of the hypotenuse.

Theorem 6.5 Altitude theorem

In a right angled triangle $A B C$ with altitude $\overline{C D}$ to the hypotenuse $\overline{A B}$,

$$
\frac{A D}{D C}=\frac{C D}{D B}
$$

Proof:-

Consider $\triangle A B C$ as shown in Figure $6.12 \triangle A B C \sim \triangle A C D \ldots$ AA similarity
So, $\angle A B C \equiv \angle A C D$
Similarly, $\triangle A B C \sim \triangle C B D \ldots$ AA similarity
So, $\angle A B C \equiv \angle C B D$.
It follows that $\angle A C D \equiv \angle C B D$.
By AA similarity, $\triangle A C D \sim \triangle C B D$.
Hence $\frac{A D}{C D}=\frac{C D}{B D} \ldots(*)$
Equivalently, $\frac{A D}{D C}=\frac{C D}{D B}$

Figure 6.12

The following are some forms of the altitude theorem.
From ($*$), $(C D)^{2}=(A D)(B D)$

$$
\text { or }(A D)(D B)=(C D)(D C)
$$

This can be stated as:
The square of the length of the altitude is the product of the lengths of the segments of the hypotenuse.

Example 3 In $\triangle A B C, \overline{C D}$ is the altitude to the hypotenuse $\overline{A B}, A D=9 \mathrm{~cm}$ and $B D=4 \mathrm{~cm}$. How long is the altitude $\overline{C D}$? See Figure 6.12.
Solution Let $h=C D$. From the Altitude Theorem, $(C D)^{2}=(A D)(B D)$
Substituting, $h^{2}=9 \times 4=36 \mathrm{~cm}^{2}$
So, $h=6 \mathrm{~cm}$.
The length of the altitude is 6 cm .

Menelaus' theorem

Menelaus' theorem was known to the ancient Greeks almost two thousand years ago. It was named in honour of the Greek mathematician and astronomer Menelaus (70-140AD).

Theorem 6.6 Menelaus' theorem

If points D, E and F on the sides $\overline{B C}, \overline{C A}$ and $\overline{A B}$ respectively of $\triangle A B C$ (or their extensions) are collinear, then $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=-1$. Conversely, if $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=-1$, then the points D, E and F are collinear.

Note: 1 For a line segment $A B$, we use the convention: $A B=-B A$.
2 If F is in $\overline{A B}$, then $\frac{A F}{F B}=r>0$.
In Figure 6.13, let D divide $\overline{B C}$ in the ratio r, E divides $\overline{C A}$ in the ratio s and F^{\prime} divides $\overline{A B}$ in the ratio t,

$$
\text { i.e., } r=\frac{B D}{D C}, s=\frac{C E}{E A} \text { and } t=\frac{A F}{F B} \text {. }
$$

We see from the figure that D divides $\overline{B C}$ and E divides $\overline{C A}$ internally, but F divide $\overline{A B}$ externally. Assume that D, E and F are collinear.
Draw $\overline{A G}, \overline{B H}, \overline{C I}$ perpendicular to $\overleftrightarrow{D F}$.
Then, $\triangle C E I \sim \triangle A E G$ (why?),
So, $\frac{C E}{A E}=\frac{C I}{A G} \Rightarrow-\frac{C E}{E A}=\frac{C I}{A G}$.

Figure 6.13

Similarly, $\triangle A F G \sim \triangle B F H$ and $\triangle B D H \sim \triangle C D I$
So, $\frac{A F}{B F}=\frac{A G}{B H}, \frac{B D}{C D}=\frac{B H}{C I} \Rightarrow-\frac{A F}{F B}=\frac{A G}{B H},-\frac{B D}{D C}=\frac{B H}{C I}$.
Hence, r rs $=\left(\frac{B D}{D C}\right)\left\langle\left(\frac{C E}{E A}\right)\left(\frac{A F}{F B}\right)=\left(\frac{-B H}{C I}\right)\left(\frac{-C I}{A G}\right)\left(\frac{-A G}{B H}\right)=-1\right.$
Therefore $\left(\frac{B D}{D C}\right)\left(\frac{C E}{E A}\right)\left(\frac{A F}{F B}\right)=-1$

It is also possible for all three of D, E and F to divide their respective sides externally, as you can see by drawing a figure. In this case, r, s, t are all negative. Otherwise the preceding proof will remain unchanged.
Therefore, $r s t=-1$ in this case also. It is not possible to have an even number of external divisions, so $r s t=-1$ in each of the possible cases.
To prove the converse of Menelaus'
 theorem, assume that $r s t=-1$.
Extend $\overline{D E}$ until it intersects $\overrightarrow{A B}$ say at a point F^{\prime}. Let r^{\prime} be the ratio in which F^{\prime} divides $\overline{A B}$, then $r^{\prime} s t=-1$ (Why?).
Hence, $r^{\prime}=r$ (Why?)
Since F is the only point that divides $\overline{A B}$ in the ratio $r, F=F^{\prime}$. This implies that D, E and F are collinear.

Exercise 6.1

1 In Figure 6.15, $\overline{A D} \equiv \overline{D C}, \overline{A E} \equiv \overline{E B}, F$ is the intersection of $\overline{C E}$ and $\overline{B D}$. Prove that $E F=\frac{1}{3} E C$.

Figure 6.15

A R B

Figure 6.16

2 In Figure 6.16, $\overline{R P}$ and $\overline{R Q}$ are the bisectors of the equal angles $A P B$ and $A Q B$, respectively. If $R P=R Q$, prove that A, R, B lie on a straight line.

Hint: Join P and Q.

3 If two medians of a triangle are equal, prove that the triangle formed by a segment of each median and the third side is an isosceles triangle.
4 Prove that the segment joining the mid-points of two sides of a triangle is parallel to the third side and is half as long as the third side.
5 a Let A $(0,0), \mathrm{B}(6,0)$ and $\mathrm{C}(0,4)$ be vertices of $\triangle A B C$.
i Find the point of intersection of the medians of $\triangle A B C$.
ii Show that the point obtained in is $\frac{2}{3}$ of the distance from each vertex to the mid-point of the opposite side.
b Repeat 5 a for $\triangle D E F$ where $\mathrm{D}(0,0), \mathrm{E}(4,0)$ and $\mathrm{F}(2,4)$ are the vertices.
6 In right angled triangle $A B C$ shown in Figure $6.17, \overline{C D}$ is altitude to the hypotenuse $\overline{A B}$. If $A C=5$ units and $A D=4$ units, find the length of
a $\overline{B D}$
b $\overline{B C}$

Figure 6.17

Figure 6.18

7 Altitude triangle for equilateral triangle: In Figures 6.18, $\triangle A B C$ is an equilateral triangle with altitude of length h and an interior point P. Three altitudes of lengths h_{1}, h_{2} and h_{3} are drawn from P to the sides of the triangle. Show that $h=h_{1}+h_{2}+h_{3}$.
Hint: Compare the area of $\triangle A B C$ with the sum of the areas of $\triangle A P C, \triangle A P B$ and $\triangle B P C$.
In problems $8-10$, the letters $A, B, C, D, E, F, r, s, t$ have the meanings which have in the statement of Menelaus' theorem.
8 In Figure 6.19, D and D^{\prime} are symmetrical about the mid-point of $\overline{B C} . E$ and E^{\prime}, F and F^{\prime} are also symmetrical about the mid-points of their corresponding sides.
Show that D^{\prime}, E^{\prime} and F^{\prime} are collinear if D, E and F are collinear.

9 In the proof of the converse part of Menelaus' theorem, assume that $\overleftrightarrow{D E}$ meets $\overleftrightarrow{A B}$ at some point F^{\prime}.
a Prove that if $\overrightarrow{D E} / / \overrightarrow{A B}$, then $r s=1$.
b Prove that if $r s t=-1$, then $\overleftrightarrow{D E}$ is not parallel to $\overleftrightarrow{A B}$.
c Prove that if $r s=1$, then $\overrightarrow{D E} / / \overrightarrow{A B}$.

10 In Figure 6.20 below, D divides $\overline{B C}$ in the ratio r and D^{\prime} divides $\overline{C B}$ in the same ratio r. E is the mid-point of $C A . D, E, F$ are collinear and $D^{\prime}, E, F^{\prime}$ are also collinear. Show that $F A=B F^{\prime}$

Figure 6.20

6.2 SPECIAL QUADRILATERALS

In this section, we consider the following special quadrilaterals; trapezium, parallelogram, rectangle, rhombus and square.

Keep in mind the mathematical definitions of each of the above quadrilaterals.

ACTIVITY 6.4

1 Discuss parallel lines based on what you see in your classroom.
2 State the parallel lines postulate.

3 Discuss what is meant by "equiangular quadrilateral" and "equilateral quadrilateral"?

4 Define the following quadrilaterals in your own terms.
a parallelogram
b rectangle
C square

5 What is an altitude of a parallelogram?
6 In Figure 6.21,
i indicate a pair of adjacent sides.
ii indicate opposite vertices of the quadrilateral.
iii Join two opposite vertices.

Figure 6.21

What do you call this line segment?
7 What is a diagonal of a quadrilateral? How many diagonals does a parallelogram or rectangle have?

Trapezium

Definition 6.1

A trapezium is a quadrilateral where only two of the sides are parallel.
In Figure 6.22, the quadrilateral $A B C D$ is a trapezium. The sides $\overline{A D}$ and $\overline{B C}$ are nonparallel sides of the trapezium $A B C D$.
Note that if the sides $\overline{A D}$ and $\overline{B C}$ of trapezium $A B C D$ are congruent, then the trapezium is called an isosceles trapezium.

Parallelogram

Definition 6.2

A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

In Figure 6.23, the quadrilateral $A B C D$ is a parallelogram. $\overline{A B} / / \overline{D C}$ and $\overline{A D} / / \overline{B C}$

Figure 6.23

ACTIVITY 6.5

1 Draw a quadrilateral $A B C D$. Let P, Q, R and S be the mid-points of its sides. Check, by construction and measurement, that $P Q R S$ is a parallelogram.
2 Draw a trapezium $A B C D$ with $A B=2 \mathrm{~cm}, B C=D A=3 \mathrm{~cm}$ and $D C=4 \mathrm{~cm}$.
a Indicate and measure the base angles of trapezium $A B C D$.
b Draw the diagonals $\overline{D B}$ and $\overline{A C}$ and then measure their lengths. Also, compare the lengths of the two diagonals.
3 Draw a parallelogram $A B C D$ with $A B=3 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$.
a Mark points on $\overline{A B}$ that divide it into three congruent parts. Through these points, draw lines across $A B C D$ parallel to $\overline{B C}$. Why do these lines divide $A B C D$ into three smaller parallelograms?
b Mark points on $\overline{B C}$ that divide it into four congruent segments. Through these points, draw lines across $A B C D$ parallel to $\overline{A B}$. How many small parallelograms does this make?
c Draw the diagonals of all the smaller parallelograms and show that these diagonals also form parallelograms.
Properties of a parallelogram and tests for a quadrilateral to be a parallelogram are stated in the following theorem:

Theorem 6.7

a The opposite sides of a parallelogram are congruent.
b The opposite angles of a parallelogram are congruent.
c The diagonals of a parallelogram bisect each other.
d If the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
e If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
f If the opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Proof of a and b:-
Given: Parallelogram $A B C D$
To prove: $\overline{A B} \equiv \overline{C D}$ and $\overline{B C} \equiv \overline{D A}$

Statement		Reason	
$\mathbf{1}$	Draw diagonal $\overline{A C}$	$\mathbf{1}$	Through two points there is exactly one straight line.
$\mathbf{2}$	$\overline{A C} \equiv \overline{C A}$	$\mathbf{2}$	Common side.
$\mathbf{3}$	$\angle C A B \equiv \angle A C D$ and $\angle A C B \equiv \angle C A D$	3	Alternate interior angles of parallel lines.
$\mathbf{4}$	$\triangle A B C \equiv \triangle C D A$	$\mathbf{4}$	ASA postulate.
5	$\overline{A B} \equiv \overline{C D}$ and $\overline{B C} \equiv \overline{D A}$, and $\angle A B C \equiv \angle C D A$	$\mathbf{5}$	Corresponding parts of congruent triangles

[^0]
Proof of $\mathrm{c}:-$

Given: Parallelogram $A B C D$ with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at O .
To prove: $\overline{A O} \equiv \overline{O C}$ and $\overline{B O} \equiv \overline{D O}$.

	Statement	Reason	
1	$\overline{A B} \equiv \overline{C D}$	1	Theorem 6.7a
2	$\angle C A B \equiv \angle A C D$ and $\angle A B D \equiv \angle C D B$	2	Alternate interior angles
	Hence, $\angle O A B \equiv \angle O C D$ and $\angle A B O \equiv \angle C D O$ 3		
4	$\overline{A O B B \equiv \triangle C O D} \equiv \overline{C O}$ and $\overline{B O} \equiv \overline{D O}$	3	ASA postulate

Proof of f:-

Given: A quadrilateral $A B C D$ with

$$
\angle A \equiv \angle C \text { and } \angle B \equiv \angle D .
$$

To prove: $A B C D$ is a parallelogram.

Figure 6.26

	Statement	Reason	
$\mathbf{1}$	$m(\angle A)+m(\angle B)+m(\angle C)+m(\angle D)=360^{\circ}$	$\mathbf{1}$	The sum of the interior angles of a quadrilateral is 360°
$\mathbf{2}$	$m(\angle A)=m(\angle C)$ and $m(\angle B)=m(\angle D)$	$\mathbf{2}$	Given
$\mathbf{3}$	$2 m(\angle A)+2 m(\angle D)=360^{\circ}$	$\mathbf{3}$	Steps 1 and 2
$\mathbf{4}$	$m(\angle A)+m(\angle D)=180^{\circ}$	$\mathbf{4}$	Simplification
$\mathbf{5}$	Therefore, $\overline{A B} / / \overline{D C}$	$\mathbf{5}$	$\angle A$ and $\angle D$ are interior angles on the same side of transversal $\overline{A D}$.
$\mathbf{6}$	$m(\angle A)+m(\angle B)=180^{\circ}$	$\mathbf{6}$	Step 2 and 4.
$\mathbf{7}$	Therefore, $\overline{A D} / / \overline{B C}$	$\mathbf{7}$	$\angle A$ and $\angle B$ are interior angles on the same side of transversal $\overline{A B}$
$\mathbf{8}$	$A B C D$ is a parallelogram	$\mathbf{8}$	Definition of a parallelogram Steps 5 and 7.

Rectangle

Definition 6.3

A rectangle is a parallelogram in which one of its angles is a right angle.

In Figure 6.27, the parallelogram $A B C D$ is a rectangle whose angle D is a right angle.
What is the measure of each of the other angles of the rectangle $A B C D$?

Some properties of a rectangle

i A rectangle has all properties of a parallelogram.
ii Each interior angle of a rectangle is a right angle.
iii The diagonals of a rectangle are congruent.

Rhombus

Definition 6.4

A rhombus is a parallelogram which has two congruent adjacent sides.

In Figure 6.28, the parallelogram $A B C D$ is a rhombus.

Some properties of a rhombus

i A rhombus has all the properties of a parallelogram.
ii A rhombus is an equilateral quadrilateral.
iii The diagonals of a rhombus are perpendicular to each other.

Figure 6.28
iv The diagonals of a rhombus bisect its angles.

Square

Definition 6.5

A square is a rectangle which has congruent adjacent sides.

In Figure 6.29 , the rectangle $A B C D$ is a square.

Some properties of a square

i A square has the properties of a rectangle.
ii A square has all the properties of a rhombus.

Figure 6.29

Group Work 6.2

1 What are some similarities and differences between a parallelogram, a rectangle and a square?
2 If $A B C D$ is a parallelogram with $A B=3 x-4, B C=2 x+7$ and $C D=x+18$, what type of parallelogram is $A B C D$?
3 Discuss the relationship among the four triangles formed by the diagonals of a rhombus.

Theorem 6.8

If the diagonals of a quadrilateral are congruent and are perpendicular bisectors of each other, then the quadrilateral is a square.

Proof:-
Given: $\quad \overline{A C} \equiv \overline{B D} ; \overline{A C}$ and $\overline{B D}$ are perpendicular bisectors of each other.
To prove: $\quad A B C D$ is a square.
Let O be the point of intersection of $\overline{A C}$ and $\overline{B D}$.

Statement
Reason

$\mathbf{1}$	$\overline{A C} \equiv \overline{B D}, \overline{A C}$ and $\overline{B D}$ are perpendicular bisectors of each other.	$\mathbf{1}$	Given
$\mathbf{2}$	$\overline{A O} \equiv \overline{B O} \equiv \overline{C O} \equiv \overline{D O}$	$\mathbf{2}$	Step 1
$\mathbf{3}$	$\angle A O B \equiv \angle B O C \equiv \angle C O D \equiv \angle D O A$	$\mathbf{3}$	All right angles are congruent
$\mathbf{4}$	$\triangle A O B \equiv \triangle B O C \equiv \triangle C O D \equiv \triangle D O A$	$\mathbf{4}$	SAS Postulate
$\mathbf{5}$	$\angle C B D \equiv \angle A D B$ and $\angle D C A \equiv \angle B A C$	$\mathbf{5}$	Corresponding angles of congruent triangles
$\mathbf{6}$	$\overline{B C} / / \overline{A D}$ and $\overline{A B} / / \overline{C D}$	$\mathbf{6}$	Alternate interior angles are congruent
$\mathbf{7}$	$A B C D$ is a parallelogram	$\mathbf{7}$	Definition of a parallelogram
$\mathbf{8}$	$A B C D$ is a rectangle	8	Diagonals are congruent
$\mathbf{9}$	$A B C D$ is a square	9	Definition of a square, $\overline{A B} \equiv \overline{C D}$ and Step 4

Exercise 6.2

$1 A B C D$ is a parallelogram, P is the mid-point of $\overline{A B}$ and Q is the mid-point of $\overline{C D}$. Prove that $A P C Q$ is a parallelogram.
2 The mid-points of the sides of a rectangle are the vertices of a quadrilateral. What kind of quadrilateral is it? Prove your answer.
3 The mid-points of the sides of a parallelogram are the vertices of a quadrilateral. What kind of quadrilateral is it? Prove your answer.
4 Prove each of the following:
a If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.
b If the diagonals of a quadrilateral bisect each other and one angle of the quadrilateral is a right angle, then the quadrilateral is a rectangle.
c If all the four sides of a quadrilateral are congruent, then the quadrilateral is a rhombus.
d The diagonals of a rhombus are perpendicular to each other.
5 In each of the following statements, sufficient conditions to be a parallelogram are stated. Prove this in each case.
a If the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
b If one pair of opposite sides of a quadrilateral is congruent and parallel, then the quadrilateral is a parallelogram.
c If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
6 Draw a parallelogram $A B C D$. Extend $\overline{A B}$ through B to P so that $A B=B P$; extend $\overline{A D}$ through D to Q so that $A D=D Q$. Prove that P, C and Q all lie on one straight line. (Hint : Draw $\overline{B D}$)
7 M is the mid-point of the side $\overline{B C}$ of a parallelogram $A B C D . \overline{D M}$ and $\overline{A B}$ produced meet at N . Prove that $\overline{A B} \equiv \overline{B N}$.
8 If $A B C D$ is a parallelogram with M and N the mid-points of $\overline{D C}$ and $\overline{A B}$ respectively, prove that $\overline{A M} \equiv \overline{C N}$.
$9 \quad A B C D$ is a parallelogram with $\overline{A D}$ produced to F and $\overline{C B}$ produced to E such that $\overline{D F} \equiv \overline{B E}$. Prove that $A E C F$ is a parallelogram.

6.3 MORE ON CIRCLES

In this section, you are going to study circles and the lines and angles associated with them. Of all simple geometric figures, a circle is perhaps the most appealing. Have you ever considered how useful a circle is? Without circles there would be no watches, wagons, automobiles, steamships, electricity or many other modern conveniences.
Recall that a circle is a plane figure, all points of which are equidistant from a given point called the centre of the circle.
As you recall from Grade 9, in Figure 6.31, $\overline{P Q}$ is a chord of the circle with centre $O \cdot \overline{A B}$ is a chord (diameter) $\widetilde{A X C}$ is an arc of the circle.

If A and C are not end-points of a diameter, $\widehat{A X C}$ is a minor arc.

$\angle B O C$ is a central angle. $\overparen{A X C}$ or arc $A X C$ is said to subtend $\angle A O C$ or $\angle A O C$ intercepts arc $A X C$.

ACTIVITY 6.6

1 Draw a circle and a line intersecting the circle at two points and another line intersecting at one point. Draw a line that does not
 intersect the circle.
2 If the length of a radius of a circle is r, then what is the length of its diameter?
3 Referring to Figure 6.32, answer each of the following questions:
a Name at least three chords, two secants and two tangents.
b Name three angles formed by two intersecting chords.
c Name an angle formed by two intersecting tangents.
d Name an angle formed by two intersecting secants.

Figure 6.32
4 Construct:
a a central angle of 75° in a circle. ba central angle of 120° in a circle.

5 How large is a central angle that is subtended by a 3 cm chord in a circle of radius 3 cm ?

6 What is the measure of a semi-circle as an arc?
7 Is the statement 'the measure of an arc is equal to the measure of the corresponding central angle' true or false?

6.3.1 Angles and Arcs Determined by Lines Intersecting Inside and On a Circle

We now extend the discussion to angles whose vertices do not necessarily lie at the centre of the circle.

In a circle, an inscribed angle is an angle whose vertex lies on the circle and whose sides are chords of the circle. In Figure 6.33, angle $P R Q$ is inscribed in the circle. We also say that $\angle P R Q$ is inscribed in the arc $P R Q$ and $\angle P R Q$ is subtended by arc $P S Q$ (or $\widehat{P S Q}$).

Measure of a central angle: Note that the measure of a central angle is the measure of the arc it intercepts.

So, $m(\angle P O Q)=m(\widehat{P X Q})$.

Figure 6.34

Theorem 6.9

The measure of an angle inscribed in a circle is half the measure of the arc subtending it.

Proof:-
Given: Circle O with $\angle B$ an inscribed angle intercepting $\overparen{A C}$.
To prove: $\mathrm{m}(\angle A B C)=\frac{1}{2} m(\widetilde{A X C})$, where
X is a point as shown in Figure 6.35.
To prove theorem 6.9, we consider three cases.
Case 1: Suppose that one side of $\angle A B C$ is a diameter of the circle with centre O.

Figure 6.35

Figure 6.36

Statement		Reason	
1	Draw radius $\overline{O B}$	1	Construction.
2	$\overline{O C} \equiv \overline{O B}$	2	Radii of the same circle.
3	$\angle O B C \equiv \angle O C B$	3	Base angles of an isosceles triangle.
4	$\angle A O C \equiv \angle O C B+\angle O B C$	4	An exterior angle of a triangle is equal to the sum of the two opposite interior angles.
5	$m(\angle A O C)=2 m(\angle A B C)$	5	Substitution.
6	But $m(\angle A O C)=m(\overparen{A X C})$	6	$\angle A O C$ is a central angle.
7	$2 m(\angle A B C)=m(\overparen{A X C})$	7	Substitution.
8	$m(\angle A B C)=\frac{1}{2} m(\widetilde{A X C})$	8	Division of both sides by 2.

Therefore, $m(\angle A B C)=\frac{1}{2} m(\widehat{A X C})$
Case 2: Suppose that A and C are on opposite sides of the diameter through B, as shown in Figure 6.37.

Figure 6.37

Statement		Reason	
$\mathbf{1}$	$m(\angle A B D)=\frac{1}{2} m(\overparen{A Y D})$	1	Case 1
2	$m(\angle D B C)=\frac{1}{2} m(\overparen{D X C})$	2	Case 1
3	$m(\angle A B D)+m(\angle D B C)=\frac{1}{2}(\overparen{A Y D})+\frac{1}{2} m(\overparen{D X C})$	3	Addition
4	$\therefore m(\angle A B C)=\frac{1}{2} m(\overparen{A X C})$	4	Substitution

Therefore, $m(\angle A B C)=\frac{1}{2} m(\widehat{A X C})$
Case 3: Suppose that A and C are on the same side of the diameter through B as shown in Figure 6.38.

Figure 6.38

	Statement		Reason
$\mathbf{1}$	$m(\angle D B C)=\frac{1}{2} m(\overparen{D A C})$	1	Case 1
2	$m(\angle D B A)=\frac{1}{2} m(\overparen{D Y A})$	2	Case 1
3	$m(\angle D B C)-m(\angle D B A)=\frac{1}{2} m(\overparen{D A C})-\frac{1}{2} m(\overparen{D Y A})$	3	Addition
4	$\therefore m(\angle A B C)=\frac{1}{2} m(\overparen{A X C})$	4	Substitution

Therefore, $m(\angle A B C)=\frac{1}{2} m(\overparen{A X C})$ in all cases and the theorem holds
Example 1 In Figure 6.39, $m(\widehat{P X Q})=110^{\circ}$. Find the measure of $\angle P R Q$.
Solution: By theorem 6.9, we have

$$
m(\angle P R Q)=\frac{1}{2} m(\widehat{P X Q})=\frac{1}{2}\left(110^{\circ}\right)=55^{\circ}
$$

Figure 6.39

Corollary 6.9.1

An angle inscribed in a semi-circle is a right angle.

Proof:-

Figure 6.40

$$
=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ} \text { or } \frac{\pi}{2} \text { radians. }
$$

Corollary 6.9.2

An angle inscribed in an arc less than a semi-circle is obtuse.

Proof:-

$$
m(\angle A B C)=\frac{1}{2} m(\widetilde{A D C})
$$

But $m(\widetilde{A B C})$ < length of a semi-circle

$$
m(\widehat{\mathrm{ABC}})<180^{\circ}
$$

Therefore, $(\widehat{A D C})>180^{\circ}$

$$
\begin{aligned}
& m(\angle A B C)=\frac{1}{2} m(\widehat{A D C})>\frac{1}{2}\left(180^{\circ}\right) \\
& m(\angle A B C)>90^{\circ} . \text { So, } \angle A B C \text { is an obtuse angle. }
\end{aligned}
$$

Corollary 6.9.3

An angle inscribed in an arc greater than a semi-circle is acute.

Theorem 6.10

Two parallel lines intercept congruent arcs on the same circle.

Figure 6.42

Proof:-
To prove this fact, you have to consider the following three possible cases:
a When one of the parallel lines $\overleftrightarrow{E F}$ is a tangent line and the other $\overleftrightarrow{B C}$ is a secant line as shown in Figure 6.42a.
b When both parallel lines $\stackrel{\rightharpoonup}{A B}$ and $\overleftrightarrow{C D}$ are secants as shown in Figure 6.42b.
c When both parallel lines $\overrightarrow{E F}$ and $\overrightarrow{G H}$ are tangents as shown in Figure 6.42c.

Case a:

Given: A circle with centre $O, \overrightarrow{E F}$ and $\overleftrightarrow{B C}$ are two parallel lines such that $\overrightarrow{E F}$ is a tangent to the circle at A and $\overleftrightarrow{B C}$ is a secant.
To prove: $\overparen{A B} \equiv \overparen{A C}$

Statement	Reason		
$\mathbf{1}$	Draw diameter $\overline{A D}$	$\mathbf{1}$	Construction.
$\mathbf{2}$	$\overline{A D} \perp \overline{E F}$ and $\overline{A D} \perp \overline{B C}$	$\mathbf{2}$	A tangent is perpendicular to the diameter drawn to the point of tangency and also $\overline{E F} / / \overline{B C}$ is given.
3	$\overparen{B D} \equiv \overparen{C D}$	$\mathbf{3}$	Any perpendicular from the centre of a circle to a chord bisects the chord and the arc subtended by it.
4	$\overparen{A B} \equiv \overparen{A C}$	$\mathbf{4}$	$\overparen{A B D} \equiv \overparen{A C D}$ (semicircles) and step 3.

Proofs of case b and case c are left as exercises.

Theorem 6.11

An angle formed by a tangent and a chord drawn from the point of tangency is measured by half the arc it intercepts.

Given: Circle O with $\angle A B C$ formed by tangent t and chord $\overline{A B}$ at B, the point of contact.
To prove: $m(\angle A B C)=\frac{1}{2} m(\overrightarrow{A X B})$

Figure 6.43

Statement	Reason		
$\mathbf{1}$	Draw $\overline{A P}$ parallel to t.	$\mathbf{1}$	Construction.
$\mathbf{2}$	$\angle P A B \equiv \angle A B C$	$\mathbf{2}$	Alternate interior angles of parallel lines.
$\mathbf{3}$	$m(\angle P A B)=\frac{1}{2} m(\overparen{P Y B})$	$\mathbf{3}$	theorem 6.9.
$\mathbf{4}$	But $\overparen{P Y B} \equiv \overparen{A X B}$	$\mathbf{4}$	theorem 6.10.
$\mathbf{5}$	$\therefore m(\angle A B C)=\frac{1}{2} m(\overparen{A X B})$	$\mathbf{5}$	Substitution from steps 2-4.

Theorem 6.12

The measure of an angle formed by two chords intersecting inside a circle is half the sum of the measures of the arc subtending the angle and its vertically opposite angle.

Proof:-
Given: Two lines $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ intersecting at P inside the circle.

To prove: $m(\angle B P D)=\frac{1}{2} m(\widehat{A X C})+\frac{1}{2} m(\widehat{B Y D})$.

Figure 6.44

Statement

Reason

1	Draw a line through A such that $\overline{A E} / / \overline{C D}$	1	Construction
2	$m(\angle B P D)=m(\angle B A E)$	2	Corresponding angles formed by two parallel lines and a transversal line.
3	$m(\angle B A E)=\frac{1}{2} m(\widehat{B D E})$	3	theorem 6.9.
4	$\widehat{A X C} \equiv \overparen{D Z E}$	4	theorem 6.10.
5	$\begin{aligned} \therefore m(\angle B P D) & =\frac{1}{2} m(\overparen{B D E}) \\ & =\frac{1}{2} m(\overparen{B Y D})+\frac{1}{2} m(\widetilde{D Z E}) \end{aligned}$	5	theorem 6.11.
6	$m(\angle B P D)==\frac{1}{2} m(\widehat{B Y D})+\frac{1}{2} m(\widetilde{A X C})$	6	Substitution and step 4.

Therefore, $m(\angle B P D)=\frac{1}{2}[m(\overparen{A X C})+m(\widehat{B Y D})]$
Example 2 In Figure 6.45, $m(\angle M R Q)=30^{\circ}$, and $m(\angle M Q R)=40^{\circ}$.
Write down the measure of all the other angles in the two triangles, $\triangle P S M$ and $\triangle Q M R$. What do you notice about the two triangles?
Solution: $\quad m(\angle Q M R)=180^{\circ}-\left(30^{\circ}+40^{\circ}\right)($ why? $)$

Figure 6.45

$$
=180^{\circ}-70^{\circ}=110^{\circ}
$$

$$
m(\angle R Q S)=\frac{1}{2} m(\overparen{R S})
$$

Therefore, $40^{\circ}=\frac{1}{2} \hat{m}(\overparen{R S})$

$$
\therefore m(\overparen{R S})=80^{\circ}
$$

$$
m(\angle P R Q)=\frac{1}{2} m(\overparen{P Q})
$$

Hence, $30^{\circ}=\frac{1}{2} m(\overparen{P Q})$
$\therefore m(\overparen{P Q})=60^{\circ}$

$$
\begin{aligned}
& m(\angle P S Q)=\frac{1}{2} m(\overparen{P Q})=\frac{1}{2}\left(60^{\circ}\right)=30^{\circ} \\
& m(\angle R P S)=\frac{1}{2} m(\overparen{R S})=\frac{1}{2}\left(80^{\circ}\right)=40^{\circ}
\end{aligned}
$$

The two triangles are similar by AA similarity.
Example 3 An angle formed by two chords intersecting within a circle is 48°, and one of the intercepted arcs measures 42°. Find the measures of the other intercepted arc.

Solution: Consider Figure 6.46.

$$
\begin{aligned}
& m(\angle P R B)=\frac{1}{2} m(\overparen{P B})+\frac{1}{2} m(\overparen{A Q})(\text { by theorem 6.11) } \\
& 48^{\circ}=\frac{1}{2}\left(42^{\circ}\right)+\frac{1}{2}(\overparen{A Q}) \\
& \Rightarrow 96^{\circ}=42^{\circ}+m(\overparen{A Q}) \\
& \therefore 54^{\circ}=m(\overparen{A Q})
\end{aligned}
$$

Figure 6.46

Remark The following result is sometimes called the product or rectangle property of a circle.

If two chords intersect in a circle as shown in Figure 6.47, then $(A P)(P B)=(X P)(P Y)$.
Hint for proof:

1	$\angle X A P \equiv \angle B Y P$ and $\angle A X P \equiv \angle Y B P$	(why?)
2	$\triangle P A X \sim \triangle P Y B$	(why?)
3	$\frac{A P}{Y P}=\frac{P X}{P B}$	(why?)
4	$\therefore(A P)(P B)=(Y P)(P X)$	(why?)

Figure 6.47

Example 4 In Figure 6.48, calculate the radius of the circle.
Solution: Let the radius of the circle be r units long.
Then, $O D=r$ and $P D=2 r-2$.
Since $(A P)(P B)=(C P)(P D)$, you have

$$
\begin{aligned}
4 \times 4 & =2(2 r-2) \\
16 & =4 r-4 \\
r & =5
\end{aligned}
$$

Figure 6.48

Group Work 6.3

1 In Figure 6.49, $\overline{A B}$ and $\overline{P Q}$ are parallel, $m(B O Q)=70^{\circ}$ and O is the centre of the circle. What is the measure of $\angle A O P$?

Figure 6.49

Figure 6.50

2 In Figure 6.49, if $P O=5$ units and $m(\overparen{P Q})=120^{\circ}$, find the length of $\overline{P Q}$.
3 In Figure 6.50, if central angle $\angle A O B$ is a right angle.
a What are the degree measures of $\angle A C B$ and $\angle A D B$?
b Find the degree measure of $\angle C B O$, if $m(\angle C A O)=20^{\circ}$.

Exercise 6.3

1 In Figure 6.51, $\overline{A B}$ is a diameter. O is the centre of the circle. If $\overline{O C} / / \overline{B D}$ and $m(\angle A B D)=60^{\circ}$, find $m(\angle O C D)$.

Figure 6.51

Figure 6.52

2 Prove that, if an angle inscribed in an arc of a circle is a right angle, then the arc is a semicircle.
3 In Figure 6.52, $\overparen{M X}$ is an arc of 28°, and $\overparen{Y N}$ is an arc of 50°.
a What is the degree measure of $\angle Y L N$?
b If $M L=4$ units, $L X=5$ units and $L N=7$ units, find $Y L$.
4 In Figure 6.52 of Question 3, would it be possible for $\angle M L X$ to be a 30° angle and for the measure of $\overparen{M X}$ to be 40° ? If so, what would be the measure of $\overparen{Y N}$?
5 In Figure 6.53, O is the centre of the circle. If $m(\angle A O B)=40^{\circ}$ and $m(\angle C O D)=60^{\circ}$, find
a $m(\angle A Q B)$
b $\quad m(\angle A P B)$?

Figure 6.53

Figure 6.54

6 In Figure 6.54, if $\mathrm{m}(\angle F A M)=40^{\circ}$ and $m(\angle C P E)=50^{\circ}$, what is the degree measure of $\angle E Y C$?
7 a In Figure 6.55, the vertices of quadrilateral $A B C D$ lie on the circle O. Such a quadrilateral is called cyclic quadrilateral.
i What is the sum of the measure of arcs $A B C$ and $A D C$?
ii Prove that opposite angles of a cyclic quadrilateral are supplementary.

Figure 6.55

Figure 6.56
b In Figure 6.56, is there a circle containing P, Q, R and S ?

8
In Figure 6.57, find the values of x and y given that O is the centre of the circle and $m(\angle A O C)=160^{\circ}$

Figure 6.57

Figure 6.58

Figure 6.59

9 In Figure 6.58, calculate the angles marked p, q, x and y.
10 Find the values of the angle marked x, y, s, r and t as shown in Figure 6.59.

6.3.2 Angles and Arcs Determined by Lines Intersecting Outside a Circle

What happens if two secant lines intersect outside a circle? In Figure 6.60, $\overleftrightarrow{A B}$ and $\overleftrightarrow{X Y}$ intersect at P outside the circle. They intercept arcs $B Y$ and $A X$. Draw the chord $\overline{A C}$ parallel to $\overrightarrow{X Y} \cdot \mathrm{P}$ Can you see that the measure of $\angle X P A$ is half the difference between the measures of arcs $B Y$ and $A X$? Can you prove it?

Figure 6.60

This is stated in theorem 6.13.

Theorem 6.13

The measure of the angle formed by the lines of two chords intersecting outside a circle is half the difference of the measure of the arcs they intercept.

The product property, $(P A)(P B)=(P X)(P Y)$ is also true when two chords intersect outside a circle. In this case, the proof is similar to the proof of the product property given in section 6.3.1.

Draw $\overline{A X}$ and $\overline{B Y}$. Two similar triangles are formed.

Figure 6.61

By considering corresponding sides, we see that
$(P A)(P B)=(P X)(P Y)$.

Can you point out the similar triangles, in Figure 6.61 and put in the other details?

256

Theorem 6.14

The measure of an angle formed by a tangent and a secant drawn to a circle from a point outside the circle is equal to one-half the difference of the measures of the intercepted arcs.

Proof:-
Given: Secant $P B A$ and tangent $\overline{P D}$ intersecting at P.
To prove: $m(\angle P)=\frac{1}{2}[m(\overparen{A X D})-m(\overparen{B D})]$

Figure 6.62

Statement	Reason		
1	Draw $\overline{B D}$	1	Construction.
2	$\angle A B D \equiv \angle B D P+\angle D P A$	2	An exterior angle of a triangle is equal to the sum of the two opposite interior angles of a triangle.
3	$\angle A B D-\angle B D P \equiv \angle D P A \equiv \angle P$	3	Subtraction.
4	$m(\angle A B D)=\frac{1}{2} m(\overparen{A X D})$ and		
5	$m(\angle A B D)=\frac{1}{2} m(\overparen{B D})$	4	theorem 6.9 and theorem 6.11.
$5(\angle B D P)$	$\frac{1}{2} m(\overparen{A X D})-\frac{1}{2} m(\overparen{B D})$	5	Substitution.
6	$\therefore m(\angle P)=\frac{1}{2} m(\overparen{A X D})-\frac{1}{2} m(\overparen{B D})$	6	Substitution.

Theorem 6.15

If a secant and a tangent are drawn from a point outside a circle, then the square of the length of the tangent is equal to the product of the lengths of line segments given by

$$
(P A)^{2}=(P B)(P C) .
$$

[^1]
Proof:-

Given: A circle with secant $\overline{P C}$ and tangent $\overline{P A}$ as in Figure 6.64
To prove: $(P A)^{2}=(P B)(P C)$
Draw $\overline{A B}$ and $\overline{C A}$. Then $\triangle P C A \sim \triangle P A B$ (show!)
Hence, $\frac{P C}{P A}=\frac{P A}{P B}$ and $(P A)^{2}=(P B)(P C)$
Example 5 In Figure 6.65, from P secants $\overline{P A}$ and $\overline{P C}$ are drawn so that $m(\angle A P C)=30^{\circ}$; chords $\overline{A B}$ and $\overline{C D}$ intersect at F such that $m(\angle A F C)=85^{\circ}$. Find the measure of $\operatorname{arc} A C$, measure of $\operatorname{arc} B D$ and measure of $\angle A B C$.

Solution: Let $m(\overparen{A C})=x$ and $m(\overparen{D B})=y$

Since $m(\angle A F C)=\frac{1}{2} m(\overparen{A C})+\frac{1}{2} m(\overparen{B D})$

$$
\begin{gather*}
85^{\circ}=\frac{1}{2}(x+y) \\
x+y=170^{\circ} \ldots \tag{1}
\end{gather*}
$$

Again as $m(\angle A P C)=\frac{1}{2} m(\overparen{A C})-\frac{1}{2} m(\overparen{B D})$

$$
\begin{align*}
30^{\circ} & =\frac{1}{2}(x-y) \\
x-y & =60^{\circ} \ldots . \tag{2}
\end{align*}
$$

Solving equation 1 and equation 2 simultaneously, we get

$$
\begin{gathered}
\left\{\begin{array}{l}
x+y=170^{\circ} \\
x-y=60^{\circ}
\end{array}\right. \\
2 x=230^{\circ} \\
x=115^{\circ}
\end{gathered}
$$

Substituting for x in equation 2,

$$
\begin{aligned}
115^{\circ}-y & =60^{\circ} \\
y & =55^{\circ}
\end{aligned}
$$

Therefore, $m(\widehat{A C})=115^{\circ}$ and $m(\overparen{D B})=55^{\circ}$.

$$
m(\angle A B C)=\frac{1}{2} m(\overparen{A C})=\frac{1}{2}\left(115^{\circ}\right)=57.5^{\circ} .
$$

Group Work 6.4

$1 \quad \overline{A B}$ is a diameter of a circle centre $O . C$ is a point on the circumference. D is a point on $\overline{A C}$ such that $\overline{O D}$
 bisects $\angle A O C$. Prove that $\overline{O D}$ is parallel to $\overline{B C}$.

2 In Figure 6.66, suppose lines $\overleftrightarrow{P A}$ and $\overleftrightarrow{P X}$ are tangents to a circle. Prove that $m(\angle A P X)=\frac{1}{2}($ measure of major $\operatorname{arc} A X)-\frac{1}{2}($ measure of minor arc $A X)$ or $m(\angle P)=\frac{1}{2} m(\widehat{A C X})-\frac{1}{2} m(\widehat{A B X})$
Hint: Draw a line through A parallel to $\overline{P X}$

Figure 6.66
3 Suppose a geostationary satellite S orbits at $35,000 \mathrm{~km}$ above earth, rotating so that it appears to hover directly over the equator. Use Figure 6.67 to determine the measure of the arc on the equator visible to this geostationary satellite.

Figure 6.67

Exercise 6.4

1 If the measure of $\operatorname{arc} A Q$ is 30° and the measure of $\operatorname{arc} B R$ is 60°, what is the measure of $\angle P$? Refer to Figure 6.68.

Figure 6.68

2 In Figure $6.69 \overleftrightarrow{A P}$ is a tangent to the circle. Prove that $\angle C A P \equiv \angle A B C$.

Figure 6.69
3 In Figure 6.70, $\overline{C D}$ is a diameter and $\overline{A B}$ is bisected by $\overline{C D}$ at P . A square with side $\overline{A P}$ and a rectangle with sides $\overline{C P}$ and $\overline{P D}$ are drawn. Prove that the areas of the square and the rectangle are equal.

Figure 6.70
4 In Figure 6.71, $\overrightarrow{A C}, \overrightarrow{C E}$ and $\overrightarrow{E G}$ are tangents to the circle with centre O, at B, D and F respectively. Prove that $C B+E F=C E$.

Figure 6.71
5 Use the circle in Figure 6.72 with tangent $\overline{P T}$, secants $\overline{P E}, \overline{P C}$ and chord $\overline{B D}$ to find the lengths of $\overline{G B}$ and $\overline{E F}$ and $\overline{P T}$, if $C G=4$ units, $G A=6$ units, $D G=3$ units, $P F=9$ units and $P A=8$ units.

Figure 6.72

Figure 6.73

6 In Figure6.73, $m(\angle B P C)=48^{\circ}, m(\angle B R C)=68^{\circ}$ and $m(\angle B C R)=62^{\circ}$. Calculate the measures of angles of $\triangle A B C$.
7 The diagonals $\overline{A C}$ and $\overline{B D}$ of the parallelogram $A B C D$ are of lengths 20 cm and 12 cm respectively. If the circle $B C D$ cuts $\overline{C A}$ at F , find the length of $\overline{A F}$.
8 In Figure $6.74, B P=6 \mathrm{~cm}, D C=10 \mathrm{~cm}$ and $C P=8 \mathrm{~cm}$. Calculate the lengths of the chord $\overline{A B}$ and the tangent $\overline{P T}$.

Figure 6.74

Figure 6.75

9 In Figure 6.75, Y is the mid-point of $\overline{X Z}$ and $\stackrel{W X}{ }$ is tangent to the circle. Find $W X$ in terms of $X Y$. Explain your reasoning.

6.4 REGULAR POLYGONS

A polygon whose vertices are on a circle is said to be inscribed in the circle. The circle is circumscribed about the polygon.
In Figure 6.76, the polygon $A B C D E$ is inscribed in the circle or the circle is circumscribed about the polygon.

Figure 6.76

Figure 6.77

A polygon whose sides are tangent to a circle is said to be circumscribed about the circle. In Figure 6.77, the pentagon PQRST is circumscribed about the circle. The circle is inscribed in the pentagon.

ACTIVITY 6.7

1 What is a regular polygon? Give examples.
2 Draw three circles of radius 5 cm . Circumscribe a quadrilateral about the first circle, a triangle about the second, and a 7 -sided polygon about the third.
3 Circumscribe a circle about a square.
4 Draw a circle such that three of the four sides of a rectangle are tangent to it. Give reasons why a circle cannot be inscribed in the rectangle of unequal sides.
5 Show that a circle can always be circumscribed about a quadrilateral if two opposite angles are right angles.
6 Show that, if a circle can be circumscribed about a parallelogram, then the parallelogram is a rectangle.
7 What is the measure of an angle between the angle bisectors of two adjacent angles in a regular polygon of $3,5,10, n$ sides?
8 What is the measure of an angle between the perpendicular bisectors of two adjacent sides of a regular polygon of $3,7,10, n$ sides?
9 Draw a square with side 5 cm . Draw the inscribed and circumscribing circles.

6.4.1 Perimeter of a Regular Polygon

You have studied how to find the length of a side (s) and perimeter (P) of a regular polygon with radius " r " and the number of sides " n " in grade 9 . The following example is given to refresh your memory.
Example 1 The perimeter of a regular polygon with 9 sides is given by:

$$
\begin{aligned}
P=9 \times 2 r \sin \frac{180^{\circ}}{9} & =9 d \sin \frac{180^{\circ}}{9} \\
9 & , \text { where } d=2 r \text { is diameter } \\
& =9 d \sin 20^{\circ} \approx 3.0782 d
\end{aligned}
$$

Example 2 Find the length of a side and the perimeter of a regular quadrilateral with radius 5 units.
Solution: $s=2 r \sin \frac{180^{\circ}}{n}$

$$
=10 \times \frac{\sqrt{2}}{2}
$$

$$
\begin{aligned}
& P=2 n r \sin \frac{180^{\circ}}{n} \\
& P=2 \times 4 \times 5 \sin \frac{180}{4} \\
&=40 \times \frac{\sqrt{2}}{2} \\
& \therefore P=20 \sqrt{2} \text { units. }
\end{aligned}
$$

$$
s=2 \times 5 \sin \frac{180^{\circ}}{4}=10 \sin 45^{\circ} \quad P=2 \times 4 \times 5 \sin \frac{180^{\circ}}{4}=40 \sin 45^{\circ}
$$

$$
\therefore s=5 \sqrt{2} \text { units. }
$$

6.4.2 Area of a Regular Polygon

Draw a circle with centre at O and radius r. Inscribe in it a regular polygon with n sides as shown in Figure 6.78. Join O to each vertex. The polygonal region is then divided into n triangles. $\triangle A O B$ is one of them.

$$
\angle A O B \text { has degree measure } \frac{360^{\circ}}{n} \text {. }
$$

Recall that the formula for the area A of a triangle with sides a and b units long and $\angle C$ included between these sides is:

$$
A=\frac{1}{2} a b \sin (\angle C)
$$

Hence, area of $\triangle A O B$ is

$$
A=\frac{1}{2} r \times r \sin (\angle A O B)=\frac{1}{2} r^{2} \sin \frac{360^{\circ}}{n}
$$

Therefore, the area A of the polygon is given by

$$
A=\frac{1}{2} n r^{2} \sin \frac{360^{\circ}}{n}(\text { why? })
$$

Theorem 6.16

The area A of a regular polygon with n sides and radius r is

$$
A=\frac{1}{2} n r^{2} \sin \frac{360^{\circ}}{n} .
$$

This formula for the area of a regular polygon can be used to find the area of a circle. As the number of sides increases, the area of the polygon becomes closer to the area of the circle.

ACTIVITY 6.8

Square $A B C D$ is inscribed in a circle of radius r.
a What is the measure of angle $A O B$?
b Find the area of the square $A B C D$.
c Find the area of the square, if $r=10 \mathrm{~cm}$.

Example 3 Show that the area A of a regular hexagon inscribed in a circle with radius r is $\frac{3 \sqrt{3}}{2} r^{2}$.

Solution: $\quad A=\frac{1}{2} n r^{2} \sin \frac{360^{\circ}}{n}=\frac{1}{2} \times 6 \times r^{2} \sin \frac{360^{\circ}}{6}=3 r^{2} \sin 60^{\circ}$ $A=3 r^{2} \times \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3} r^{2}}{2}$ sq units.

Exercise 6.5

1 Find the area of a regular nine-sided polygon with radius 5 units.
2 Find the area of a regular twelve-sided polygon with radius 3 units.
3 Prove that the area A of an equilateral triangle inscribed in a circle with radius r is $A=\frac{3 \sqrt{3} r^{2}}{4}$. Use this formula to find the area of an equilateral triangle inscribed in a circle with radius:
a $\quad 2 \mathrm{~cm}$
b $\quad 3 \mathrm{~cm}$
C $\quad \sqrt{2} \mathrm{~cm}$
d $\quad 2 \sqrt{3} \mathrm{~cm}$.

4 Prove that the area A of a square inscribed in a circle with radius r is $A=2 \mathrm{r}^{2}$. Use this formula to find the area of a square inscribed in a circle with radius:
a $\quad 3 \mathrm{~cm}$
b $\quad 2 \mathrm{~cm}$
C $\quad \sqrt{3} \mathrm{~cm}$
d 4 cm .

5 Show that all the distances from the centre of a regular polygon to the sides are equal.

6 Use Figure 6.80 given above to prove the formula for the apothem a:

$$
a=r \cos \frac{180^{\circ}}{n} .
$$

7 Use the formula $a=r \cos \frac{180^{\circ}}{n}$ to calculate the apothems of the following regular polygons inscribed in a circle of radius 12 cm :
a triangle b quadrilateral c hexagon d nonagon.

8 Show that a formula for the area A of a regular polygon with n sides, apothem a and perimeter P is: $A=\frac{1}{2} a P$.
Use this formula to calculate the area of a regular;
a triangle b quadrilateral c hexagon d octagon.
Give your answer in terms of its radius.
9 a Show that another formula for the area A of a regular polygon with n sides, radius r and perimeter P is:

$$
A=\frac{1}{2} \operatorname{Pr} \cos \frac{180^{\circ}}{n} .
$$

b Show that the ratio of the area of two regular n-sided polygons is the square of the ratio of their radii.
c Use the formula for the apothem and $s=2 r \sin \frac{180^{\circ}}{n}$ to show that the ratio of the areas of two regular polygons with the same number of sides is the ratio of the squares of the lengths of corresponding sides.
d Can you prove the result in c above without using any of the formulae of this section?
10 A circular tin is placed on a square. If a side of the square is congruent to the diameter of the tin, calculate the percentage of the square which remains uncovered. Give your answer correct to 2 decimal places.

F-2] Key Terms

altitude
apothem
arc
bisector
central angle
centroid
chord
circle
circumcentre
circumcircle
collinear points
concurrent lines
Euclidean Eeometry
incentre
incircle
inscribed angle
major arc
median
minor arc
orthocenter
parallelogram
perpendicular

路 Summary

1 The medians of a triangle are concurrent at a point $\frac{2}{3}$ of the distance from each vertex to the mid-point of the opposite side.

2 The perpendicular bisectors of the sides of any triangle are concurrent at a point called circumcenter which is equidistant from the vertices of the triangle.
3 The altitudes of a triangle are concurrent at a point called the orthocentre of the triangle. If points D, E and F on the sides $\overline{B C}, \overline{C A}$ and $\overline{A B}$ respectively of $\triangle A B C$ (or their extensions) are collinear, then $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=-1$. Conversely, if $\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=-1$, then the points D, E and F are collinear.
4 A trapezium is a quadrilateral that has only two sides parallel.
5 A parallelogram is a quadrilateral in which both pairs of opposite sides are parallel.

6 A rectangle is a parallelogram in which one of its angles is a right angle.
7 A rhombus is a parallelogram which has two congruent adjacent sides.
8 A square is a rectangle which has congruent adjacent sides.
9 In a circle, an inscribed angle is an angle whose vertex lies on the circle and whose sides are chords of the circle.

10 In Figure 6.81, $m(\angle A P B)=\frac{1}{2} m(\widehat{A X B})$

Figure 6.82

In Figure 6.83, $m(\angle B P D)=\frac{1}{2} m(\widetilde{A X C})+\frac{1}{2} m(\widetilde{B Y D})$ and $(A P)(P B)=(C P)(P D)$

Figure 6.83

16 In Figure 6.84:
a $\quad m(B P D)=\frac{1}{2} m(\overparen{B D})-\frac{1}{2} m(\overparen{A C})$
b $\quad m(D P Q)=\frac{1}{2} m(\overparen{D Q})-\frac{1}{2} m(\overparen{Q C})$
c $\quad(P A)(P B)=(P C)(P D)$
d $\quad(P Q)^{2}=(P C)(P D)$

Figure 6.84

17 The length of a side s and perimeter P of a regular polygon with n sides and radius r are:

$$
s=2 r \sin \frac{180^{\circ}}{n} \quad P=2 n r \sin \frac{180^{\circ}}{n} \quad P=n s
$$

18 The area A of a regular polygon with n sides and radius r is

$$
A=\frac{1}{2} n r^{2} \sin \frac{360^{\circ}}{n} .
$$

?
 Review Exercises on Unit 6

1 The points E and F are the mid-points of side $\overline{A B}$ and $\overline{A D}$ of parallelogram $A B C D$. Prove that area $(A E C F)=\frac{1}{2}$ area $(A B C D)$. (See Figure 6.85)

Figure 6.85
2 Two chords $\overline{A B}$ and $\overline{C D}$ of a circle intersect at right angles at a point inside a circle. If $m(\angle B A C)=35^{\circ}$, find the measures of $\angle A B D, \overparen{C B}$ and $\overparen{A D}$.
3 In Figure 6.86, O is the centre of the circle. Calculate x and y.

Figure 6.86

A

Figure 6.87

Figure 6.88

4 In Figure 6.87, if $m(\angle A)=10^{\circ}, m(\overparen{E F})=15^{\circ}$ and $m(\overparen{C D})=95^{\circ}$, find $m(\angle B)$.
5 From any point outside a circle with centre O and radius r, a line is drawn cutting the circle at A and B. Prove that $(P A)(P B)=(P O)^{2}-r^{2}$, as shown in Figure 6. 88

6 Two chords $\overline{A B}$ and $\overline{C D}$ of a circle intersect when produced at a point P outside the circle and $\overline{P T}$ is tangent from P to the circle.
Prove that $(P A)(P B)=(P C)(P D)=(P T)^{2}$.

Figure 6.89
7 A chord of a circle of radius 6 cm is 8 cm long. Find the distance of the chord from the centre.
$8 \overline{M N}$ is a diameter and $\overline{Q R}$ is a chord of a circle, such that $\overline{M N} \perp \overline{Q R}$ at L (as shown in Figure 6.90). Prove that $(Q L)^{2}=(M L) \cdot(L N)$.

Figure 6.90

Figure 6.91

9 Secants $\overrightarrow{C A}$ and $\overrightarrow{C E}$ intersect a circle at A, B, D and E as shown in Figure 6.91. If the lengths of the segments are as shown, find the length of $\overline{C D}$.
$10 \overrightarrow{A O B}, \overrightarrow{C O D}$ are two straight lines such that $A B=20 \mathrm{~cm}, C D=19 \mathrm{~cm}, A O=6 \mathrm{~cm}$, $C O=7 \mathrm{~cm}$. Prove that $A C B D$ is a cyclic quadrilateral.
$11 A B X Y$ is a parallelogram of area $18 \mathrm{~cm}^{2}, A B=6 \mathrm{~cm}, A Y=4 \mathrm{~cm}$ and C is a point on $\overline{Y X}$ or extended such that $B C=5 \mathrm{~cm}$. Find:
a the area of $\triangle A B C$
b the distance from B to $\overline{A Y}$.

[^0]: Can you show that $\angle B A D \equiv \angle D C B$?

[^1]: Figure 6.63

